E2s: structurally economical and functionally replete.
نویسندگان
چکیده
Ubiquitination is a post-translational modification pathway involved in myriad cellular regulation and disease pathways. The Ub (ubiquitin) transfer cascade requires three enzyme activities: a Ub-activating (E1) enzyme, a Ub-conjugating (E2) enzyme, and a Ub ligase (E3). Because the E2 is responsible both for E3 selection and substrate modification, E2s function at the heart of the Ub transfer pathway and are responsible for much of the diversity of Ub cellular signalling. There are currently over 90 three-dimensional structures for E2s, both alone and in complex with protein binding partners, providing a wealth of information regarding how E2s are recognized by a wide variety of proteins. In the present review, we describe the prototypical E2-E3 interface and discuss limitations of current methods to identify cognate E2-E3 partners. We present non-canonical E2-protein interactions and highlight the economy of E2s in their ability to facilitate many protein-protein interactions at nearly every surface on their relatively small and compact catalytic domain. Lastly, we compare the structures of conjugated E2~Ub species, their unique protein interactions and the mechanistic insights provided by species that are poised to transfer Ub.
منابع مشابه
Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases.
Ubiquitin-conjugating enzymes (E2s) collaborate with the ubiquitin-activating enzyme (E1) and ubiquitin ligases (E3s) to attach ubiquitin to target proteins. RING-containing E3s simultaneously bind to E2s and substrates, bringing them into close proximity and thus facilitating ubiquitination. We show herein that, although the E3-binding site on the human E2 UbcH5b is distant from its active sit...
متن کاملUUCAC- and Vera-Dependent Localization of VegT RNA in Xenopus Oocytes
Localized mRNAs are directed to their destinations by "localization elements" (LEs) in their 3'UTRs. LEs harbor multiple, functionally redundant localization "signals." These signals are poorly defined, hence it is unclear whether the signals-and their cognate factors-are unique to each RNA or employed generally. Five "E2s" (UUCACs) in the 366 nt Vg1 LE (VgLE) direct this transcript to the vege...
متن کاملMolecular characterization of plant ubiquitin-conjugating enzymes belonging to the UbcP4/E2-C/UBCx/UbcH10 gene family.
The anaphase promoting complex or cyclosome is the ubiquitin-ligase that targets destruction box-containing proteins for proteolysis during the cell cycle. Anaphase promoting complex or cyclosome and its activator (the fizzy and fizzy-related) proteins work together with ubiquitin-conjugating enzymes (UBCs) (E2s). One class of E2s (called E2-C) seems specifically involved in cyclin B1 degradati...
متن کاملIsolation, Characterization, and Degradation Performance of the 17β-Estradiol-Degrading Bacterium Novosphingobium sp. E2S
A 17β-estradiol (E2)-degrading bacterium E2S was isolated from the activated sludge in a sewage treatment plant (STP). The morphology, biological characteristics, and 16S ribosomal RNA (rRNA) gene sequence of strain E2S indicated that it belonged to the genus Novosphingobium. The optimal degrading conditions were 30 °C and pH 7.0. The ideal inoculum volume was 5% (v/v), and a 20-mL degradation ...
متن کاملGenome Analysis Genome Analysis and Functional Characterization of the E2 and RING-Type E3 Ligase Ubiquitination Enzymes of Arabidopsis
Attachment of ubiquitin to substrate proteins is catalyzed by the three enzymes E1, E2 (ubiquitin conjugating [UBC]), and E3 (ubiquitin ligase). Forty-one functional proteins with a UBC domain and active-site cysteine are predicted in the Arabidopsis (Arabidopsis thaliana) genome, which includes four that are predicted or shown to function with ubiquitin-like proteins. Only nine were previously...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 433 1 شماره
صفحات -
تاریخ انتشار 2011